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Stable diffusion revolutionized image creation from descriptive text. GPT-2 (ref. 1),
GPT-3(.5) (ref. 2) and GPT-4 (ref. 3) demonstrated high performance across a variety
oflanguage tasks. ChatGPT introduced such language models to the public. Itis now
clear that generative artificial intelligence (Al) such as large language models (LLMs)
is here to stay and will substantially change the ecosystem of online text and images.
Here we consider what may happen to GPT-{n} once LLMs contribute much of the text
found online. We find that indiscriminate use of model-generated content in training

causesirreversible defects in the resulting models, in which tails of the original
contentdistribution disappear. We refer to this effect as ‘model collapse’ and show
thatit can occurin LLMs as well as in variational autoencoders (VAEs) and Gaussian
mixture models (GMMs). We build theoretical intuition behind the phenomenon and
portray its ubiquity among all learned generative models. We demonstrate that it
must be taken seriously if we are to sustain the benefits of training from large-scale
datascraped from the web. Indeed, the value of data collected about genuine
human interactions with systems will be increasingly valuable in the presence of
LLM-generated content in data crawled from the Internet.

The development of LLMsis veryinvolved and requires large quantities
of training data. Yet, although current LLMs>*¢, including GPT-3, were
trained on predominantly human-generated text, this may change.
If the training data of most future models are also scraped from the
web, then they willinevitably train on data produced by their predeces-
sors. Inthis paper, we investigate what happens when text produced
by, for example, a version of GPT forms most of the training dataset
of following models. What happens to GPT generations GPT-{n} as
nincreases? We discover that indiscriminately learning from data
produced by other models causes ‘model collapse’—a degenerative
process whereby, over time, models forget the true underlying data
distribution, evenin the absence of a shiftin the distribution over time.
We give examples of model collapse for GMMs, VAEs and LLMs. We
show that, over time, models start losing information about the true
distribution, which first starts with tails disappearing, and learned
behaviours converge over the generationsto a point estimate with very
small variance. Furthermore, we show that this processisinevitable,
even for cases with almost ideal conditions for long-term learning,
that is, no function estimation error. We also briefly mention two
close concepts to model collapse from the existing literature: cata-
strophic forgetting arising in the framework of task-free continual
learning’ and data poisoning®’ maliciously leading to unintended
behaviour. Neither is able to explain the phenomenon of model col-
lapse fully, as the setting is fundamentally different, but they provide
another perspective onthe observed phenomenon and are discussed
in more depth in the Supplementary Materials. Finally, we discuss

the broader implications of model collapse. We note that access to
the original data distributionis crucial:inlearning tasks in which the
tails of the underlying distribution matter, one needs access to real
human-produced data. In other words, the use of LLMs at scale to
publish content on the Internet will pollute the collection of data to
train their successors: dataabout humaninteractions with LLMs will
beincreasingly valuable.

What is model collapse?

Definition 2.1 (model collapse). Model collapse is a degenerative
process affecting generations of learned generative models, in which
the data they generate end up polluting the training set of the next
generation. Being trained on polluted data, they then mis-perceive
reality. The processis depicted in Fig. 1a. We separate two special cases:
early model collapse and late model collapse. In early model collapse,
the model begins losing information about the tails of the distribu-
tion; inlate model collapse, the model converges to adistribution that
carries little resemblance to the original one, often with substantially
reduced variance.

This process occurs owing to three specific sources of error com-
pounding over generations and causing deviation from the original
model:

« Statistical approximation error. This is the primary type of error,
which arises owingto the number of samples being finite, and disap-
pearsasthe number of samples tends to infinity. This occurs because
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Fig.1| Thehigh-level description ofthe feedback mechanisminthe
learning process. a, Model collapse refers to a degenerative learning process
inwhichmodels start forgetting improbable events over time, as the model
becomes poisoned withits own projection of reality. Here data are assumed
tobe human-curated and start off clean; then model Ois trained and dataare
sampled fromit; at step n,dataareadded to the overall datafromstepn-1

and this combinationisused to train model n. Data obtained with Monte Carlo
sampling should ideally be statistically close to the original, provided that
fitting and sampling procedures are perfect. This process depicts what
happensinreallife with the Internet: model-generated databecome pervasive.
b,c, Performance of OPT-125m models of different generations evaluated using
the original wikitext2 test dataset. Shown ontheleftare the histograms of
perplexities of eachindividual data training sequence produced by different
generations as evaluated by the very first model trained with the real data.

of anon-zero probability that information can get lost at every step
of resampling.

» Functional expressivity error. This is asecondary type of error,
arising owing to limited function approximator expressiveness. In
particular, neural networks are only universal approximators as their
size goes toinfinity. Asaresult,aneural network canintroduce non-
zero likelihood outside the support of the original distribution or zero
likelihood inside the support of the original distribution. A simple
example of the expressivity error is if we tried fitting a mixture of two
Gaussians with asingle Gaussian. Evenif we have perfectinformation

about the data distribution (that is, infinite number of samples),
model errors willbe inevitable. However, in the absence of the other
two types of error, this can only occur at the first generation.

« Functional approximation error. Thisis asecondary type of error,
arising primarily from the limitations of learning procedures, for
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Over the generations, models tend to produce samples that the original model
trained with real datais more likely to produce. At the same time, amuchlonger
tailappears for later generations. Later generations start producing samples
that would never be produced by the original model, that s, they start
misperceivingreality based onerrorsintroduced by their ancestors. The same
plotsareshownin3Dinthe Supplementary Materials. Ontheright, average
perplexity and its standard deviation are shown for eachindependent run. The
xaxisreferstothe generation of the model. ‘Real’ refers to the ‘model O’ trained

ontheoriginal wikitext2 dataset; model1was trained on the data produced by
model 0, model 2 was trained on data produced by model1and so on, with all
generated datasets equal in size. We find that models trained on generated
dataareabletolearnsome of the original task, but witherrors, asseenfromthe

increase in perplexity.

example, structural bias of stochastic gradient descent’®" or choice

of objective'. This error can be viewed as one arising in the limit of
infinite data and perfect expressivity at each generation.

Each of the above can cause model collapse to get worse or better.
More approximation power can evenbe adouble-edged sword—better
expressiveness may counteract statistical noise, resulting in a good
approximation of the true distribution, but it can equally compound
the noise. More often than not, we get a cascading effect, inwhich indi-
vidual inaccuracies combine to cause the overall error to grow. For
example, overfitting the density model causes the model to extrapolate
incorrectly and assigns high-density regions to low-density regions
not covered in the training set support; these will then be sampled
with arbitrary frequency. It is worth noting that other types of error

exist. For example, computers have limited precision in practice. We
now turn to mathematical intuition to explain how the above giverise



totheerrors observed, how different sources can compound and how
we can quantify the average model divergence.

Theoretical intuition

Here we provide atheoretical intuition for the phenomenon of model
collapse. We argue that the process of model collapse is universal
among generative models that recursively train on data generated by
previous generations. We quantify the sources of errors discussed in
the previous section by examining two mathematical models, which
prove to be simple enough to provide analytical expressions for quanti-
ties of interest, but also portray the phenomenon of model collapse:
adiscrete distribution in the absence of functional expressivity and
approximation errors, and a multidimensional Gaussian approxima-
tion, portraying joint functional expressivity and statistical errors.
We furtherillustrate theimpact of all three jointly for amore complex
setting of density estimation in Hilbert spaces in the Supplementary
Materials.

The overall stochastic process we consider, which we call learning
with generational data, is the following. The dataset at generation i is
D, comprising independent and identically distributed random vari-
ables X"jwith distributionp;,j €{1,..., M} denotes the size of the dataset.
Going from generation i to generation i + 1, we aim to estimate the
distribution of samples in D, with an approximation P, .Thisstepis
what we refer to as functional approximation, P, = ]—‘g(p) The dataset
D, is then generated by sampling from p, = alpa +Bp, +yp,, With
non-negative parameters a;, f;, y;summingto1, thatls theyrepresent
proportions of data used from different generations. This corresponds
to amixing of datacoming from the original distribution (y;), dataused
by the previous generation (8;) and data generated by the new model
(a;). Werefer to this as the sampling step. For the mathematical models
tocome, we consider 8=y, =0, thatis, dataonly fromasingle step are
used, whereas numerical experiments are performed on more realistic
choices of parameters.

Discrete distributions with exact approximation

In this subsection, we consider a discrete probability distribution in
absence of functional approximation and expressivity errors, that is,
F(p) = p.Inthis case, model collapse arises only because of statistical
errors fromthe sampling step. At first, the tails (low-probability events)
begin to disappear as aresult of the low probability of sampling them
and, over time, support of the distribution shrinks. Denotmg thesam-
plesizeasM, if we consider state i with probability g < — M, the expected
number of samples with value i coming from those events will be less
than 1. In practice, this would mean that we lose information about
them. Considering more generally some state i with probability g, using
standard conditional probability, we can show that the probability of
losing information (that is, sampling no data at some generation) is
equal to1- g, implying that the distribution must converge to a delta
function positioned at some state, with the probability of ending up
at a certain state equal to the probability of sampling said state from
the original distribution.

This can be shown directly by considering the process X' > 7>
p.., > X"*'asaMarkov chain, as X' only depends on X'. Furthermore,
ifallthe X’j have the same value, then at the next generation, the approx-
imated distribution will be exactly adeltafunction and therefore all of
X"jf’1 will also have the same value. This implies that the Markov chain
contains at least one absorbing state and therefore, with probability
1, it will converge to one of the absorbing states. This is a well-known
fact, of whicha proof'is provided in the Supplementary Materials. For
this chain, the only absorbing states are those corresponding to delta
functions. As aresult, as we follow the progress of model collapse, we
areguaranteed toend upinaconstant state, having lost all the informa-
tion of the original distribution when the chainis absorbed. This argu-
ment also works in general owing to floating-point representations

being discrete, making the Markov chain over the parameters of the
model discrete. Thus, as long as the model parameterization allows
for deltafunctions, we will get toit, because—owing to sampling errors—
the only possible absorbing states are delta functions. On the basis of
the discussion above, we see how both early model collapse, in which
only the low-probability events get cut off, and late stage model col-
lapse, in which the process beginsto collapse into asingle mode, must
arise in the case of discrete distributions with perfect functional
approximation.

Multidimensional Gaussian

Followingthe discussion about discrete distributions, we now presenta
more genericresult, which can be shown inthe Gaussian approximation
setting, inwhich each generationis approximated using the unbiased
estimates of the mean and the variance. A similar result holds more
generally, which we detail in the Supplementary Materials.

Theorem 3.1 (Gaussian model collapse). Assume the original data
aresampled from distribution D, (not necessarily Gaussian), withnon-
zero sample variance. Assume X" are fit recursively using the unbiased
sample mean and variance estimators from the previous generation,
X'j’-|pn, I~ N, X)), with a fixed sample size. Then,

EIW3N(,, 3,), Dl > ; I, > 0asne,
in which W, denotes the Wasserstein-2 distance between the true dis-
tribution and its approximation at generation n.

Inwords, thisimplies that not only does the nth generation approxi-
mation diverge arbitrarily far from the original one but it also collapses
tobezerovariance as the number of generationsincreases, with prob-
ability 1. The results are very analogous to that seenin the discrete case,
withthistheoremillustrating the effect of late stage model collapse, in
whichthe process beginsto collapse to be zero variance. The early stage
model collapse canalsobe seenand theinterested readerisreferred to
the Supplementary Materials for amore in-depth discussion.

Model collapse inlanguage models

In this section, we evaluate the effect of model collapse on language
models. We cover more interpretable machine learning models—VAEs
and GMMs—in the Supplementary Materials. Code is publically avail-
ableinref.13.

Model collapseis universal across various families of machine learn-
ing models. Yet, if small models such as GMMs and VAEs are normally
trained from scratch, LLMsare different. They are so expensive toretrain
fromscratch that they are typically initialized with pre-trained models
such as BERT*, RoBERTa’® or GPT-2 (ref. 2), which are trained on large
text corpora. They are then fine-tuned to various downstream tasks'.

Here we explore what happens with language models when they
are sequentially fine-tuned with data generated by other models. We
can easily replicate all experiments covered in this paper with larger
language models in non-fine-tuning settings to demonstrate model
collapse. Given that training a single moderately large model produces
twice the American lifetime’s worth of CO, (ref. 15), we opted to not run
suchan experiment and instead focus on amore realistic setting for a
proofof concept. Note that even the language experiments described
inthis paper took weeks to run. We evaluate the most common setting
of training a language model—a fine-tuning setting for which each of
the training cycles starts fromapre-trained model with recent data. The
data here come from another fine-tuned pre-trained model. Because
training is restricted to produce models that are close to the original
pre-trained model, and data points generated by the models will gener-
ally produce very smallgradients, the expectation here may be that the
model should only change moderately after fine-tuning. We fine-tune
the OPT-125m causal language model made available by Meta through
Hugging Face®.
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We fine-tune it on the wikitext2 dataset™. For data generation from
the trained models, we use a five-way beam search. We block training
sequences to be 64 tokens long; then, for each token sequence in the
training set, we ask the model to predict the next 64 tokens. We go
through all of the original training dataset and produce an artificial
dataset of the same size. Because we go through all of the original
dataset and predict all of the blocks, if the model had O error, it would
produce the original wikitext2 dataset. Training for each generation
startswith generation from the original training data. Each experiment
is run five times and the results are shown as five separate runs with
different randomness seeds. The original model fine-tuned with real
wikitext2 data obtains 34 mean perplexity, fromthe zero-shot baseline
of 115, that is, it successfully learns the task. Finally, to be as realistic
as possible, we use the best-performing model on the original task,
evaluated using the original wikitext2 validation set, as the base model
for the subsequent generations, meaning that—in practice—observed
model collapse can be even more pronounced. Here we consider two
different settings:

« Five epochs, no original training data. Here the model is trained for
five epochs starting on the original dataset but with no original data
retained for subsequent runs. The overall original task performance s
presented in Fig.1b. We find that training with generated data allows
us to adapt to the underlying task, losing some performance, from
20 to 28 perplexity points.

» Tenepochs, 10% of original training data preserved. Here the model
is trained for ten epochs on the original dataset and with every new
generation of training, arandom 10% of the original data points is
sampled. The overall original task performanceis presentedin Fig.1c.
We find that preservation of the original data allows for better model
fine-tuning and leads to only minor degradation of performance.

Bothtrainingregimeslead to degraded performancein our models,
yetwe do find that learning with generated datais possible and models
cansuccessfully learn (some of) the underlying task. In particular, from
Fig.1and their3D versionsinthe Supplementary Materials, we see that
model collapse occurs, as the density of samples with low perplexity
beginstoaccumulate over the generations. Thisin turn makesit likely
that, over the generations, the sampled data will similarly collapse to
adeltafunction.

Itisimportantto note herethat the observed behaviourisinline with
the generalintuitionestablished inthe section ‘Theoreticalintuition’. To
be precise, inall experiments, generational learningis only performed
on a finite (usually small) number of generations, whereas claims of
the section ‘Theoretical intuition’ are mostly presented in the limit of
generations going to infinity. However, as seen from experiments on
VAEs and GMMs in the Supplementary Materials, convergence to delta
functions and specific rates of such convergence are highly related to
the specifics of the problem considered, and complete collapse may
or may not occur, even after asmall number of steps. This is further
illustrated theoretically in the Supplementary Materials, in which
potentially notable divergence from the original model can occur even
after afew generations.

Figure 1b,c on the left shows histograms of individual data-point
perplexities generated by the models of different generations as
is evaluated by the first model developed with real wikitext2 train-
ing data. Here, over the generations, models tend to produce more
sequences that the original model would produce with the higher
likelihood. The observed effect is similar to that described for VAEs
and GMMs inthe Supplementary Materials, inwhich—over the genera-
tions—models started to produce samples that would be produced
with higher probabilities by the original model. At the same time, we
discover that generated data have much longer tails, suggesting that
some of the data would never be produced by the original model—
these are the errors that accumulate because of the learning with
generational data.
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Example 1. Example of text outputs of an OPT-125m model affected by
model collapse—models degrade over generations, for which each new
generation is trained on data produced by the previous generation.

« Input: some started before 1360 — was typically accomplished by a

master mason and asmall team of itinerant masons, supplemented by

local parish labourers, according to Poyntz Wright. But other authors
reject thismodel, suggesting instead that leading architects designed
the parish church towers based on early examples of Perpendicular.

Outputs:

Gen 0: Revival architecture such as St. John’s Cathedral in London.

The earliest surviving example of Perpendicular Revival architecture

is found in the 18th @-@ century Church of Our Lady of Guernsey,

which dates from the late 19th century. There are two types of per-
pendicular churches: those.

Gen 1: architecture such as St. Peter’s Basilica in Rome or St. Peter’s

Basilicain Buenos Aires. Thereisno evidence that any of these build-

ings were built during the reign of Pope Innocent IlI, but it is possible

that they may have been built during the reign of his successor, Pope

Innocent.

Gen 5:ism, which had been translated into more than100 languages

including English, French, German, Italian, Spanish, Portuguese,

Dutch, Swedish, Norwegian, Polish, Hungarian, Slovak, Lithuanian,

Estonian, Finnish, Romanian, Bulgarian, Turkish, Croatian, Serbian,

Ukrainian, Russian, Kazakh, Kyrgyz.

« Gen9:architecture. In addition to being home to some of the world’s
largest populations of black @-@ tailed jackrabbits, white @-@tailed
jackrabbits, blue @-@tailed jackrabbits, red @-@tailed jackrabbits,
yellow @-.

Ablation: Repetitions

We find that data generated by language models in our experiments
end up containingalarge number of repeating phrases, asin Example 1.
Therepeating problem hasbeenobservedin nearly all text-generation
models”®and, to rule this out as the cause of model collapse, we further
provide numerical experiments when models are explicitly encouraged
to produce non-repeating sequences with a repeating penalty of 2.0.
We find that this causes the models to produce lower score continua-
tions toavoid using repeats, which—as aresult—causes the consequent
models to perform even worse. Model perplexities shift across the
generations towards more probable token sequences, as measured
using the model trained on the original real data distribution. Further
illustrations are provided in the Supplementary Materials. In particular,
enforcingthis for the LLM experiments causes the perplexity to double
compared with the original. Models remain as susceptible to model
collapse, if not more.

The described process demonstrates that fine-tuning of language
models does not curb the effects of model collapse and models that
are being fine-tuned are also vulnerable. We find that, over the gen-
erations, models tend to produce more probable sequences from the
original data and start introducing their own improbable sequences,
thatis, errors.

Discussion

We now discuss the implications of model collapse on the underlying
learning dynamics of LLMs. Long-term poisoning attacks on language
models are not new. For example, we saw the creation of click, content
and troll farms, aform of human ‘language models’, whose job is to mis-
guide social networks and search algorithms. The negative effect that
these poisoning attacks had onsearchresultsled to changesinsearch
algorithms. For example, Google downgraded farmed articles”, putting
more emphasis on content produced by trustworthy sources, such as
education domains, whereas DuckDuckGo removed them altogether?.
What is different with the arrival of LLMs is the scale at which such
poisoning can happen once it is automated. Preserving the ability of



LLMs to modellow-probability eventsis essential to the fairness of their
predictions: such events are often relevant to marginalized groups.
Low-probability events are also vital to understand complex systems?.

Our evaluation suggests a ‘first mover advantage’ when it comes
to training models such as LLMs. In our work, we demonstrate that
training on samples from another generative model can induce
adistribution shift, which—over time—causes model collapse. This in
turn causes the model to mis-perceive the underlying learning task.
To sustain learning over a long period of time, we need to make sure
that access to the original data source is preserved and that further
data not generated by LLMs remain available over time. The need to
distinguish datagenerated by LLMs from other data raises questions
about the provenance of content that is crawled from the Internet:
itis unclear how content generated by LLMs can be tracked at scale.
One optionis community-wide coordination to ensure that different
parties involved in LLM creation and deployment share the informa-
tion needed to resolve questions of provenance. Otherwise, it may
becomeincreasingly difficult to train newer versions of LLMs without
access to data that were crawled from the Internet before the mass
adoption of the technology or direct access to data generated by
humans at scale.
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